Zendesk to Delta Lake

This page provides you with instructions on how to extract data from Zendesk and load it into Delta Lake. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Zendesk?

Zendesk is an online customer service and support ticketing (help desk) system.

What is Delta Lake?

Delta Lake is an open source storage layer that sits on top of existing data lake file storage, such AWS S3, Azure Data Lake Storage, or HDFS. It uses versioned Apache Parquet files to store data, and a transaction log to keep track of commits, to provide capabilities like ACID transactions, data versioning, and audit history.

Getting data out of Zendesk

You can extract data from Zendesk's servers using the Zendesk REST API, which exposes data about tickets, agents, clients, groups, and more. To get data on a ticket, for example, you could call GET /api/v2/tickets.json.

Sample Zendesk data

The Zendesk API returns JSON-formatted data. Here's an example of the kind of response you might see when querying for the details of a ticket.

{
  "id":               35436,
  "url":              "https://company.zendesk.com/api/v2/tickets/35436.json",
  "external_id":      "ahg35h3jh",
  "created_at":       "2017-07-20T22:55:29Z",
  "updated_at":       "2017-08-05T10:38:52Z",
  "type":             "incident",
  "subject":          "Help, my printer is on fire!",
  "raw_subject":      "{{dc.printer_on_fire}}",
  "description":      "The fire is very colorful.",
  "priority":         "high",
  "status":           "open",
  "recipient":        "support@company.com",
  "requester_id":     20978392,
  "submitter_id":     76872,
  "assignee_id":      235323,
  "organization_id":  509974,
  "group_id":         98738,
  "collaborator_ids": [35334, 234],
  "forum_topic_id":   72648221,
  "problem_id":       9873764,
  "has_incidents":    false,
  "due_at":           null,
  "tags":             ["enterprise", "other_tag"],
  "via": {
    "channel": "web"
  },
  "custom_fields": [
    {
      "id":    27642,
      "value": "745"
    },
    {
      "id":    27648,
      "value": "yes"
    }
  ],
  "satisfaction_rating": {
    "id": 1234,
    "score": "good",
    "comment": "Great support!"
  },
  "sharing_agreement_ids": [84432]
}

Loading data into Delta Lake on Databricks

To create a Delta table, you can use existing Apache Spark SQL code and change the format from parquet, csv, or json to delta. Once you have a Delta table, you can write data into it using Apache Spark's Structured Streaming API. The Delta Lake transaction log guarantees exactly-once processing, even when there are other streams or batch queries running concurrently against the table. By default, streams run in append mode, which adds new records to the table. Databricks provides quickstart documentation that explains the whole process.

Keeping Zendesk up to date

You've built a script that pulls data from Zendesk and loads it into your destination database, but what happens tomorrow when you have dozens of new tickets and related data?

The key is to build your script in such a way that it can identify incremental updates to your data. Thankfully, Zendesk's API returns updated_at fields that allow you to identify new records. Once you've taken new data into account, you can set up your script as a cron job or continuous loop to keep pulling down new data as it appears.

Other data warehouse options

Delta Lake on Databricks is great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Amazon Redshift, Google BigQuery, PostgreSQL, or Snowflake, which are RDBMSes that use similar SQL syntax, or Panoply, which works with Redshift instances. Others choose a data lake, like Amazon S3. If you're interested in seeing the relevant steps for loading data into one of these platforms, check out To Redshift, To BigQuery, To Postgres, To Snowflake, To Panoply, and To S3.

Easier and faster alternatives

If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.

Thankfully, products like Stitch were built to move data from Zendesk to Delta Lake automatically. With just a few clicks, Stitch starts extracting your Zendesk data, structuring it in a way that's optimized for analysis, and inserting that data into your Delta Lake data warehouse.